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Three-dimensional instabilities of the two-dimensional flow in a rectangular cavity
driven by the simple harmonic oscillation of one wall are investigated. The cavity has
an aspect ratio of 2:1 in cross-section and is infinite in the spanwise direction. The two-
dimensional base flow has no component in the spanwise direction and is periodic
in time. In addition, it has the same space–time symmetry as a two-dimensional
periodically shedding bluff-body wake: invariance to a mid-plane reflection composed
with a half-period evolution in time. As for the wake, there are two kinds of possible
synchronous three-dimensional instability; one kind preserves this space–time
symmetry and the other breaks it, replacing it with another space–time symmetry. One
of these symmetry breaking modes has been observed experimentally. The present
study is numerical, using both linear Floquet analysis techniques and fully nonlinear
computations. A new synchronous mode is found, in addition to the experimentally
observed mode. These two modes have very different spanwise wavelengths. In
analogy to the three-dimensional instabilities of bluff-body wakes, the long-wavelength
synchronous instability is named mode A, while that for the short wavelength is named
mode B. However, their space–time symmetries are interchanged compared to those of
the synchronous bluff-body wake modes. Another new, but non-synchronous, mode
is found: this has complex-conjugate pair Floquet multipliers, and arises through
a Neimark–Sacker bifurcation of the base flow. This mode, QP, has a spanwise
wavelength intermediate between modes A and B, and manifests itself in the nonlinear
regime as either quasi-periodic standing waves or modulated travelling waves.

1. Introduction
In their experimental study, Vogel, Hirsa & Lopez (2003) describe the vortex

dynamics of the flow in a rectangular cavity that is driven by the harmonic oscillation
of the bottom wall. The original motivation for studying that flow stems from its
potential use in measurement of surface dilatational viscosity of a gas/liquid interface
in the presence of insoluble monolayers (Lopez & Hirsa 2001). For that application,
the top lid is removed to expose a free interface. For practical operation of the surface
viscometer, it is desirable to have the flow in its basic state (i.e. nominally two-dimen-
sional with a flat interface). Vogel et al. experimentally examined the stability of the
basic state, both with a free surface and with a rigid top lid. The spanwise extent of the
cavity was large, approximately 20 times the depth of the cavity. As might be expected
for flows in large-aspect-ratio geometries, it was observed that the effects of the
spanwise sidewalls were small and localized, at least for the basic state. The expectation
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was further confirmed by comparing the experimentally observed flows at low forcing
amplitude with two-dimensional computations. The primary features of the two-
dimensional time-periodic basic state consist of a Stokes layer on the oscillating
wall that is forced to roll-up into vortical rollers by the presence of the streamwise
endwalls; the rollers form alternately at each end of the cavity, synchronously with
the stroke of the bottom. The experiments showed that, in the range of parameters
considered, the two-dimensional basic state lost stability to a three-dimensional state
with a well-defined periodicity in the spanwise direction. This spanwise periodicity
was observed to vary smoothly with parameter changes, suggesting that quantization
effects due to the finite spanwise length were not significant.

Those observations helped to motivate the present study into the stability of the two-
dimensional basic state to three-dimensional disturbances, periodic in the spanwise
direction, for a cavity with a rigid top lid. As work progressed, it became apparent
that further interest is engendered through the connection to the stability properties of
other flows that share the same symmetry group, e.g. two-dimensional time-periodic
wakes of bluff bodies such as the circular and square cylinders. While those flows
are autonomous and open, whereas this flow is periodically driven and completely
enclosed, the connections between the primary symmetry breaking transitions in both
classes of flow appear to be quite direct. The distinction between open and closed flow
is not important because the wake instabilities are of absolute type. The fact that the
present flow is periodically driven, while the two-dimensional wakes are autonomous,
does, however, have an important consequence. In the wake flows, there is only one
dimensionless controlling parameter, the Reynolds number, whereas in the cavity flow
(with a fixed geometry) there are two, since both the amplitude and frequency of the
wall motion can be varied independently. As a result, we can independently produce
onset of all the modes we have observed through appropriate choices for these control
parameters. This is different to what occurs in the wake flows: for example, in the
circular cylinder wake, ‘mode A’ is the first three-dimensional instability to arise as
Re is increased (Re ≈ 190) and ‘mode B’ bifurcates at higher Re from a basic state
that is already unstable to mode A.

Through Floquet analysis of the cavity flow we have found that the basic state
loses stability to three-dimensional modes in a number of distinct ways, depending
on the parameter regime. Specifically, we have identified two synchronous modes that
are analogous to modes A and B of circular and square cylinder wakes (Williamson
1988, 1996; Barkley & Henderson 1996; Robichaux, Balachandar & Vanka 1999),
together with a new quasi-periodic three-dimensional mode which can manifest either
as standing waves, or spanwise travelling waves that are modulated by the periodic
base flow.† Of these two, only the travelling-wave solutions are stable.

1.1. Flow geometry, dimensionless groups, and symmetries

Figure 1 is a schematic of the cavity showing the Cartesian coordinate system (x, y, z)
and instantaneous isosurfaces of the spanwise z-vorticity of a two-dimensional basic
state at the end of the stroke of the oscillating cavity floor in the y-direction. The
naming and orientation of the axes have been chosen in order to help underscore
the connection of the symmetries of the present flow with those of bluff-body wakes,
in which the free-stream flow is conventionally aligned in the x-direction. The two-
dimensional system has two characteristic lengths: the cavity x-dimension h and its

† In another study (Blackburn & Lopez 2003), we have shown that the two-dimensional wakes
of the circular and square cylinder both possess standing-wave and travelling-wave modes.
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Figure 1. Schematic of the cavity showing the coordinate system and instantaneous
isosurfaces of the spanwise z-vorticity of a basic state.

y-dimension Γ h. Taking h as a length scale, the maximum floor velocity Vmax as a
velocity scale, the period T of sinusoidal floor oscillation as a time scale, and the
fluid’s kinematic viscosity, ν, we have three dimensionless groups that completely
govern the flow. These are the cavity aspect ratio Γ , the Reynolds number

Re = Vmax h/ν,

and the Stokes number

St = h2/T ν.

We keep the streamwise aspect ratio fixed at Γ = 2 as this is the value used in the
experiments of Vogel et al. (2003), which in addition had spanwise aspect ratio Λ = 19.
The y-velocity of the wall at x = 0 is given by Vmax sin(2πt/T ).

The basic flow state will have the symmetries of the system. For finite Λ, the
geometry is a rectangular box, but such a system does not have the symmetry of
a rectangular box, owing to the periodic oscillation of the floor. The only spatial
invariance of this flow in a finite rectangular box is reflection about z = 0:

(u, v, w)(x, y, z, t) = (u, v, −w)(x, y, −z, t), (1.1)

i.e. Z2 symmetry. In the limit Λ → ∞, the spatial invariances are reflections about any
(x, y)-plane and arbitrary translations in the spanwise z-direction,

(u, v, w)(x, y, z, t) = (u, v, w)(x, y, z + α, t), (1.2)

for any real α, which in combination with (1.1), and assuming spanwise periodicity,
generates an O(2) spanwise symmetry group. The harmonic oscillation of the floor
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in the cavity introduces a spatio-temporal symmetry. The system is invariant to a
reflection about the plane y =0 together with a half-period evolution in time:

(u, v, w)(x, y, z, t) = (u, −v, w)(x, −y, z, t + T/2), (1.3)

where T = (Re h)/(St Vmax) is the period of the floor oscillation. This spatio-temporal
symmetry – which we shall refer to as H symmetry – is isomorphic to Z2. So
the complete symmetry group of the flows we have studied here is O(2) × Z2. The
individual symmetries, and their group, are exactly the same as for two-dimensional
time-periodic wakes of symmetrical bluff bodies such as the circular and square
cylinders.

1.2. Implications of symmetries for instabilities

The time-periodic base flow may lose stability in a number of ways. One is via a
synchronous bifurcation, whereby a Floquet multiplier crosses the unit circle at +1,
and a new time-periodic state synchronous with the floor oscillation results. The
breaking of reflection symmetry in the spanwise direction corresponds to a pitchfork
bifurcation, but the associated translation invariance in the O(2) symmetry means
that we have a pitchfork of revolution, the individual solutions being distinguished
by their spatial phase in the spanwise direction. The solutions would correspond to
a family of standing waves (modulated by the base flow in our case), with periodic
structure in the spanwise direction. Modes A and B of the circular cylinder wake are
of this type.

Another possibility is for a pair of complex-conjugate multipliers to cross the unit
circle, giving rise to a quasi-periodic state, one period being that of the floor oscillation
and the other related to the phase angle of the pair of critical Floquet multipliers
that attain unit modulus at the Neimark–Sacker bifurcation. For our problem, the
new second frequency can manifest itself in two ways, depending on whether the
bifurcation breaks the spanwise reflection invariance or the spanwise translation
invariance of the O(2) symmetry of the basic state. If spanwise reflection invariance is
broken, then the bifurcating state is a +z- or −z-travelling wave (TW), modulated by
the oscillating base state. The spanwise translation speed is proportional to the new
frequency resulting from the bifurcation. The two possibilities (±z-TW) are related
by the spanwise reflection symmetry. If instead, the bifurcation breaks the spanwise
translation invariance, then quasi-periodic standing waves (SW) result. In this case,
a complete circle of standing waves results, distinguished by their spanwise spatial
phase. As in the case of a Hopf bifurcation with O(2) symmetry (Golubitsky, Stewart
& Schaeffer 1988), the Neimark–Sacker bifurcation with O(2) symmetry results in
both SW and TW bifurcating simultaneously.

The third way that this system may lose stability is via a period doubling bifurcation,
whereby pairs of critical Floquet multipliers cross the unit circle at −1; the work
of Swift & Wiesenfeld (1984) shows that in systems with H -symmetry, two is the
minimum multiplicity required. As a consequence of the additional O(2) spanwise
symmetry in our problem, the minimum required multiplicity of the −1 multiplier
for period doubling is four, and further, the period doubling is a codimension-two
bifurcation (Marques, Lopez & Blackburn 2003). Such a bifurcation has, to our
knowledge, not yet been recorded for flows with Z2 × O(2) symmetry.

A more extended explanation of the implications of the present base flow symmetry
group for the possible kinds of three-dimensional symmetry-breaking bifurcations may
be found in Marques et al. (2003).
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2. Floquet analysis and modal structure
The Floquet stability analysis on which this work is based in turn rests on

time evolution of the incompressible Navier–Stokes equations and their linearized
equivalents for the evolution of infinitesimal perturbations about the T -periodic two-
dimensional base flows. The interested reader can find background and more detail
in Iooss & Joseph (1990), Barkley & Henderson (1996) and Tuckerman & Barkley
(2000). The main focus of this section will be the Fourier spanwise structure and
symmetries of Floquet modes.

Perturbation solutions u′ can be written as a sum of Floquet modes, ǔ(t + t0) =
eγ t ũ(t0), where ũ(t0) are the T -periodic Floquet eigenfunctions of the Navier–Stokes
equations linearized about the T -periodic base flow, t0 is an arbitrary starting phase
and the constants γ = σ + iω are Floquet exponents. The Floquet multipliers, which
define the growth of Floquet modes over one base flow period, are related to the
exponents by µ = eγ T . The time-periodic basic state becomes linearly unstable when
one or more multipliers leaves the unit circle, or equivalently when the real part
of one or more exponents becomes positive. In a Neimark–Sacker bifurcation, the
imaginary part, ω, of the Floquet exponent is non-zero, signalling the introduction of
a second period Ts = 2π/ω into the mode – in general, Ts is incommensurate with T

and the mode is quasi-periodic. It is convenient in the development below to define
also the normalized Floquet mode, in which the exponential growth is factored out,
leaving a possibly oscillatory temporal behaviour:

ū(t + t0) = e−σ t ǔ(t + t0) = eiωt ũ(t0). (2.1)

The base flow U here is both two-dimensional, i.e. ∂zU = 0, and two-component, i.e.
U ≡ (U, V, 0). These restrictions have important implications for the three-dimensional
spatial forms that the Floquet modes can take. The three-dimensional structure of
the eigenfunctions is expressed by their projection onto a Fourier basis in z: at each
wavenumber β = 2πh/λ, where λ is the wavelength in the z-direction,

ũ(x, y, z, t) = û(x, y, t)eiβz + û
(x, y, t)e−iβz, (2.2)

where û
 is the complex-conjugate of û. With a two-dimensional two-component
restriction of the base flow U , restricted three-dimensional mode shapes of the two
forms

(u′, v′, w′)(x, y, z, t) = (u′ cos βz, v′ cos βz, w′ sin βz)(x, y, t), (2.3)

(u′, v′, w′)(x, y, z, t) = (u′ sin βz, v′ sin βz, w′ cos βz)(x, y, t), (2.4)

are linearly independent. For cases with real Floquet multipliers, it is sufficient to
examine the behaviour of either of these forms, since any linear combination will just
correspond to moving the reference frame a fixed distance in the spanwise direc-
tion. However, for quasi-periodic modes – those for which the Floquet exponents/
multipliers have a non-zero imaginary part – restricting the mode shapes to one of
(2.3) or (2.4) corresponds to a restriction to standing-wave type solutions. Consider the
temporal evolution of a normalized Floquet mode for a quasi-periodic case (complex-
conjugate Floquet multipliers), where now scalar ū represents any of (ū, v̄, w̄)(x, y, z, t)
and dropping reference to the arbitrary starting phase t0,

ū(x, y, z, t) = [û(x, y)eiβz + û
(x, y)e−iβz]eiωt + [û(x, y)eiβz + û
(x, y)e−iβz]e−iωt

= [eiωt + e−iωt ]eiβzû(x, y) + [eiωt + e−iωt ]e−iβzû
(x, y). (2.5)
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This general form allows travelling waves (TWs) to be represented. Restriction to
cosine waves in z implies taking û
 = û real, and thus

ū(x, y, z, t) =
[
ei(ωt+βz) + e−i(ωt+βz) + ei(ωt−βz) + e−i(ωt−βz)

]
û(x, y)

= 4 cos βz cos ωtû(x, y), (2.6)

a standing cosinusoidal wave. Likewise, restriction to sine waves in z implies taking
û= −û
 purely imaginary, and so

ū(x, y, z, t) =
[
−iei(ωt+βz) + ie−i(ωt+βz) − iei(ωt−βz) + ie−i(ωt−βz)

]
û(x, y)

= 4 sin βz cos ωtû(x, y), (2.7)

again, a standing wave (SW), this time with sinusoidal structure in z. So to allow
travelling-wave Floquet modes for cases where critical multipliers come in complex-
conjugate pairs, we have to allow a full complex structure for û. By restricting the
symmetries of the modes we can also compute standing-wave cases.

3. Numerical techniques
3.1. Treatment of the evolution equations

All the numerical techniques rely on time evolution of the Navier–Stokes equations
and their linearized equivalents, using standard spectral element methods in (x, y)
and Fourier expansions in the spanwise z-direction for three-dimensional direct
numerical simulation (DNS). See Karniadakis (1990), Karniadakis & Sherwin (1999)
and Henderson (1999) for other examples and detailed descriptions of the associated
numerical methods.

3.1.1. Boundary conditions

Non-slip velocity boundary conditions are employed on all walls. The velocity is
zero on stationary walls, and the perturbation velocity is zero on all walls. In the
two-dimensional simulations used to compute the base flows for stability analysis,
and in the three-dimensional simulations of the evolved flows, the y-component of
velocity, v, on the oscillating floor was set to

v(0, y, z, t) = [1−exp(−200(1+y/h)4)][1−exp(−200(1−y/h)4)]Vmax sin(2πt/T ), (3.1)

the exponential terms provide a smooth regularization of the discontinuity where the
floor meets the stationary walls.

Pressure boundary conditions are obtained by taking the dot product of the domain
unit outward normal n with the Navier–Stokes equations. For each Fourier mode k

∂nP̂ k = n · (− Âuk − ν∇ × ∇ × ûk − ∂t ûk), (3.2)

where Âuk represents the Fourier transform of the advection terms in either the
full or linearized Navier–Stokes equations, the rotational form of the viscous term
exploits the solenoidality of the velocity, and for the present application n · ∂t u =0 at
all boundaries.

3.1.2. Discretization and convergence

The spectral element mesh employed in the (x, y)-plane is illustrated in figure 2.
Time integration uses a mixed explicit–implicit time-stepping scheme with equal-order
velocity and pressure shape functions (Karniadakis, Israeli & Orszag 1991), and all
results presented here were obtained using second-order time integration.

Within each spectral element, shape functions in (x, y) are tensor products of
Gauss–Legendre–Lobatto (GLL) Lagrange nodal interpolants. The order of the
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Figure 2. Cross-section of the cavity in the (x, y)-plane, showing the outlines of the 108
spectral elements used in the discretization. The oscillating wall is located at x =0.

(10, 738) (100, 1212) (200, 1250)

Np Ntot 1000Emin 1000Emax 1000Emin 1000Emax 1000Emin 1000Emax

3 1126 6.4235 35.841 7.4178 16.716 4.9522 10.000
5 2806 6.4614 36.150 7.7386 17.013 4.2900 11.106
7 5440 6.4612 36.154 7.7354 17.010 4.2966 11.111
9 10800 6.4612 36.154 7.7337 17.009 4.2958 11.111

Table 1. Spatial resolution convergence study of the two-dimensional base flows, showing the
effect of varying the GLL Lagrange polynomial order Np on temporal maxima and minima of
the flow kinetic energy at three representative combinations of the control variables (St, Re).

one-dimensional Lagrange interpolants, Np , was selected on the basis of two-
dimensional convergence tests for integrating the Navier–Stokes equations,
conducted at a range of representative values of St and Re, with the monitored
parameter being the kinetic energy of the flow, E. These results are shown in
table 1. The total number of independent mesh points in two dimensions for each
interpolation order is given by Ntot. At each combination of control parameters
(which effectively bracket those used in the remainder of the paper), the maxima and
minima of the kinetic energy have converged to three significant figures or better at
Np = 7, which was adopted for all subsequent simulations.

For three-dimensional Navier–Stokes simulations, the spanwise wavelength λ=
2πh/β used at each studied combination of (St, Re) was chosen as the most-amplified
wavelength found in related Floquet analyses. The number of modes adopted was
chosen after simulations were conducted with 16 Fourier modes (spanwise mesh
spacing λ/32). On the basis that the minimum decay in spectral energy at Fourier
mode index k = 3 compared to the two-dimensional component at k =0 was seven
orders of magnitude, eight z-planes (four Fourier modes) was deemed sufficient for
subsequent three-dimensional simulations.

3.2. Floquet analysis

3.2.1. Numerical method

Floquet analysis for three-dimensional instabilities is carried out using the linearized
Poincaré map for the T -periodic two-dimensional base flows. The numerical method
employed has been described by Barkley & Henderson (1996), Tuckerman & Barkley
(2000); Krylov subspace iteration is used to extract the dominant eigenvalues of the
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(10, 738); β = 8.25 (100, 1212); β = 9.00 (200, 1250); β = 1.75

Np Ntot

3 1126
5 2806
7 5440
9 10 800

|µ| �θ

0.4234 0
0.9684 0
0.9859 0
0.9862 0

|µ| �θ

0.7756 ±1.4628
1.0241 ±1.4471
0.9944 ±1.4723
0.9905 ±1.4771

|µ| �θ

0.9295 0
1.0014 0
1.0018 0
1.0015 0

Table 2. Spatial resolution convergence study for Floquet analysis, showing the effect of
varying the GLL Lagrange polynomial order Np on Floquet multipliers at the same combina-
tions of the control variables St and Re used in the two-dimensional resolution studies
summarized in table 1, and at particular values of β , as shown. Complex-conjugate Floquet
multipliers are indicated by non-zero values of θ in the polar form.

0 20 40                                  60
St

500

600

700

800

900

1000

Re

Figure 3. The locus in parameter space of the transition from the two-dimensional base
state to the three-dimensional mode B state, as determined by Floquet analysis (solid circles
and line), together with experimental observations (Vogel et al. 2003): open circles represent
two-dimensional states, filled diamonds represent three-dimensional mode B states.

map. The data used to supply the T -periodic base flow are obtained through Fourier-
series reconstruction from a limited number (typically 64) of time-slices obtained from
two-dimensional DNS.

3.2.2. Validation and resolution studies

The spatial convergence of the Floquet analysis is assessed based on the convergence
of the multipliers, as shown in table 2. The diagnostic parameters converge to three
significant figures or better with Np =7, the same as in the convergence study of
the two-dimensional base flows (table 1), so Np =7 was adopted for all subsequent
Floquet analyses.

The code has been validated against other analyses for the circular and square
cylinder wakes (Blackburn & Lopez 2003) and three-dimensional DNS of a swirling
axisymmetric flow (Blackburn 2002). For the flow under study here, we can compare
directly with the experiments of Vogel et al. (2003, figure 17), where the transition
from two-dimensional to three-dimensional flows was determined for St ∈ [14, 53]. Our
computed critical locus for the onset of three-dimensional instability is shown com-
pared to the experimental results in figure 3. The open circles are the experimentally
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observed two-dimensional base states and the filled diamonds are the experimentally
observed three-dimensional synchronous states. The solid circles and the spline-
fitted curve are the locus of the bifurcation points from two-dimensional to three-
dimensional mode B synchronous states, as predicted by the Floquet analysis. The
agreement is in general very good, considering the finite spanwise extent of the cavity
used in the experiments.

4. Stability of the basic state
When Re is increased beyond a critical value (that depends on St), the two-

dimensional basic state undergoes symmetry-breaking bifurcations leading to three-
dimensional states with periodic structure in the z-direction. Depending on St, we
have found that the basic state undergoes either synchronous or Neimark–Sacker
bifurcations. We have found two distinct synchronous modes that have some similari-
ties to the synchronous modes A and B that bifurcate from the two-dimensional
periodic shedding state in the wake of a circular cylinder. We have chosen to also
refer to our synchronous modes as A and B, and to the new quasi-periodic mode as QP.

In the two-dimensional (St, Re) control space there are three distinct loci along
which the different modes reach criticality, i.e. along which |µ| =1 for some value
of spanwise wavenumber β . Figure 4 shows variations of the moduli of Floquet
multipliers, |µ|, with the spanwise wavenumber, β , at three different pairs of the control
parameters (St, Re). Each of the pairs (St, Re) corresponds to an example for the onset
of three-dimensional flow via each of the three types of modes, A, B and QP. In these
examples, the critical spanwise wavelength for mode A is λ/h ≈ 2π/1.7 = 3.7, which
is much greater than that for either mode B or QP, both with λ/h ≈ 2π/8.5 = 0.74 at
these values of (St, Re). For comparison, the wavelengths of modes A and B for the
cylinder wake at onset are approximately 4.0 and 0.82 cylinder diameters, respectively
(Barkley & Henderson 1996).

The variation with St of the spanwise spatial scales associated with each of the three
modes is illustrated in figure 5. In this figure, the variation of |µ| with β is presented
over a range St ∈ [10, 200] at the critical Re for each value of St; the three thick
lines indicate critical loci for each of the three modes as labelled, where |µ| =1. The
critical spanwise wavelengths for the three modes are quite distinct; mode A has the
largest wavelength, mode B the shortest, and mode QP has wavelengths intermediate
between those of modes A and B.

The bifurcation curves for the three modes in (St, Re)-space are presented in
figure 6(a). At low St, mode B is the first to become critical with increasing Re; at
high St, mode A is first, and at intermediate St (St ∈ [87.5, 132]), mode QP becomes
critical first. In figure 6(b), the corresponding critical wavenumbers are plotted; this
figure represents the projection of the three-dimensional stability surface (figure 5)
onto the two-dimensional (St, β)-plane. It is interesting that the wavenumbers for
the onset of mode QP are approximately the same as for mode B at low St, and
also that at St =87.5, where the mode B and mode QP bifurcation curves intersect,
the wavenumber for mode B is approximately double that for mode QP. Beyond
approximately St = 40, βc for mode B increases almost linearly with St, until it
reaches βc = 2πh/λc ≈ 14.5, i.e. until the wavelength of the spanwise periodicity is
reduced to approximately the radius of the spanwise roller.

A comparison of the bifurcation curve of mode B in (St, Re)-space with experimental
observations of the base state and mode B state from Vogel et al. (2003) was shown
previously in figure 3. The fact that the agreement was quite good is an indication
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Figure 4. Modulus of the Floquet multipliers, |µ|, as a function of the spanwise wavenumber,
β , at critical Re for three sample St , corresponding to the different modes: (a) mode A at
(St = 160, Re= 1191), (b) mode B at (St = 20, Re= 532.5), and (c) mode QP at (St =100,
Re= 1212). Filled circles indicate real Floquet multipliers, open circles indicate the occurrence
of complex-conjugate pairs.

that the onset of mode B is via a supercritical bifurcation; this point will be taken up
again in § 5.4. We can also compare with measurements of wavenumber for mode B
from the same set of experiments. In figure 6(b), the value of β from figure 14 of
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Figure 5. The variation of |µ| with β = 2πh/λ over a range St ∈ [10, 200] at the critical Re
for each value of St; the three thick lines indicate the loci where |µ| = 1, each thick line
corresponding to criticality of one of the three modes.

Vogel et al. (2003), extrapolated to Rec = 835 at St =53, is seen to fall almost exactly
on the value predicted by the Floquet analysis.

In the following two sections we summarize the symmetries and characteristics of
the unstable modes, based on both Floquet analysis and full DNS results near the
onset of instability for the three modes, based on specimen results computed at set
values of St. Modes A and B, computed at St = 160, 20, respectively, are dealt with
in § 5, while mode QP, computed at St = 100, is described in § 6.

5. Spatio-temporal structure of the synchronous modes
Following the common usage for descriptions of mixing-layer and wake flows,

the terms ‘roller’ and ‘braid’ denote, respectively, large-scale rotating flow structures
with primarily spanwise-aligned vorticity, and smaller-scale structures that can be
visualized using vorticity components that are orthogonal to the spanwise direction.
Braid-like structures are typically spanwise-orthogonal perturbation vorticity that is
amplified through stretching induced by the primary flow.

The two three-dimensional synchronous modes have cellular flows. This is clearly
seen from the structure of their eigenfunction expansions, as detailed in § 2. The
velocity in the spanwise direction, w, is zero at z = nλ/2, ∀n ∈ � and ∀t , implying
zero flux across the nodal planes. The two modes A and B are three-dimensional
T -periodic standing waves.

5.1. Basic states

Instantaneous contours of spanwise vorticity at T/8 phases illustrating the basic states
that are unstable to modes A and B are shown in figure 7. At times t = 0 and T , the
cavity floor is at rest, about to begin moving in the +y-direction. Both basic states
exhibit large spanwise rollers located at the ±y ends of the cavity.

The most obvious distinguishing feature of the basic state that is unstable to
mode A (figure 7a) is the persistence of two strong rollers through all phases of the
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Figure 6. Plots of the critical values of (a) Re and (b) β , as functions of St, for the transition
from the two-dimensional basic state to the three-dimensional states, modes A, B and QP.
Closed (open) circles are used to represent solution branches with real (complex-conjugate
pair) Floquet multipliers. In (b), � represents the value of β at St = 53 from the experiments
of Vogel et al. (2003, figure 14), extrapolated to Rec = 835.

floor cycle. In contrast, for the basic state that is unstable to mode B, it can be seen
in figure 7(b) that at 2T/8 and 6T/8 there is essentially only a single roller present.
A less obvious distinction is the fate of shear layers that form on the vertical walls of
the cavity, i.e. at y = ±h. For base states unstable to mode B, these shear layers wrap
around and are stretched by the roller adjacent to the wall producing the shear layer;
the shear layer and the roller have opposite signed vorticity. For base states unstable
to mode A, however, the corresponding shear layers separate from the vertical walls
and penetrate into the core of the roller adjacent to the shear-layer-producing wall;
again, the shear layer and the roller have opposite signed vorticity. There is a smooth
continuum of basic states for St and Re intermediate for those of figure 7(a, b).
Additional contour plots corresponding to other basic states that are unstable to
mode B may be found in Vogel et al. (2003).

5.2. Perturbation enstrophy of the synchronous modes

Instantaneous contours of enstrophy (the magnitude of vorticity) associated with
the critical Floquet eigenfunctions of the base flows shown in figure 7, are plotted
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Figure 7. Contours of z-vorticity of the basic state at (a) (St =160, Re =1191) which is
marginally unstable to mode A, and (b) (St= 20, Re= 532.5) which is marginally unstable to
mode B, at T/8 phases over one forcing period. In each panel, the cavity floor is at the bottom.
Black/grey contours represent positive/negative vorticity.
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in figure 8. These enstrophy contours are shown on planes z = λc/4 + nλc/2, n ∈ �.
These are planes on which the x and y components of perturbation vorticity have
extrema – the z component, however, has extrema at z = nλc/2. An H -symmetry of
the perturbation enstrophy – a non-negative scalar quantity – is apparent.

By comparison with figure 7(a), it can be observed that for mode A instability
(figure 8a), the largest perturbation enstrophy is located on the walls and within the
cores of the rollers. In contrast, for mode B, the perturbation is strongest in the
shear layers that wrap around the roller, and there is little evidence of significant
perturbation within the core of the single roller that is present at any time. The
vortex-core perturbation enstrophy appears to be continuously present within each
roller for mode A, and replenished with each floor stroke. The perturbation enstrophy
for mode B appears to be essentially regenerated anew with each stroke. Further,
it is apparent that this enstrophy is absorbed into the Stokes layer and wrapped
around the roller at the opposite end of the cavity during the second half of the cycle,
providing a seed for the perturbation enstrophy in the succeeding stroke of opposite
sense.

5.3. Three-dimensional structure and symmetries of the synchronous modes

The three-dimensional structures of modes A and B are visualized with the aid of
perspective views of instantaneous vorticity isosurfaces in figure 9. The left-hand
column of the figure illustrates the critical Floquet eigenfunctions for modes A and B
(St = 160 and 20, respectively), while the right-hand column illustrates very similar
asymptotic results from DNS at the same St and β values, but at slightly elevated
(supercritical) Re.

In all panels of the figure, translucent isosurfaces show the spanwise component
of vorticity, and solid isosurfaces show the vertical component of vorticity (which is
analogous to the streamwise component of vorticity in a bluff-body wake). It should
be noted that in the case of the Floquet eigenfunctions, the spanwise (translucent)
vorticity does not correspond to the eigenfunction, but to the two-dimensional DNS
of the base flow at the same phase in time; this combination is used to emphasize the
spatio-temporal relationship between the perturbation and the base flow. However,
for isosurfaces illustrating the saturated DNS, the spanwise and vertical vorticity both
come from the same three-dimensional nonlinear simulation.

For mode A, there is significant vertical perturbation vorticity at all times both
within and between the spanwise rollers, as well as on the vertical walls of the cavity.
The combination of vorticity isosurfaces employed does not directly illustrate the
spanwise perturbation vorticity for mode A, but in fact this component is very
significant in comparison with the vertical vorticity component, and resides largely
within the cores of the rollers. The contribution of the spanwise perturbation
component is however reflected in the waviness of the rollers, which can be seen in the
DNS results of figure 9(b). Note that the wave shape of each roller stays essentially
fixed in space at phases t0 (the time at which the floor reaches its maximum travel in
the −y-direction) and t0 + T/2, and that the extrema in the perturbation x-vorticity
maintain their orientation throughout the cycle.

For mode B, the dominant perturbation x-vorticity resides in braids within the
shear layers wrapped around the rollers, as is clearly marked by the isosurfaces of
perturbation x-vorticity in figure 9(c, d). In comparison to mode A, note that (i)
for mode B the cores of the rollers do not become significantly wavy and (ii) the
perturbation x-vorticity at a given spanwise and y-location changes sign as time
proceeds from t0 to t0 + T/2.
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Figure 8. Contours of the enstrophy of (a) the mode A Floquet eigenfunction at (St = 160,
Re =1185), and (b) the mode B Floquet eigenfunction at (St= 20, Re =532.5), over one forcing
period, T . The data are extracted at z = λ/4, where the x, y components of vorticity have
extrema.
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Figure 9. Comparisons of instantaneous vorticity isosurfaces from Floquet analysis with those
from direct numerical simulation for mode A at St =160 and β = 1.7, and mode B at St = 20
and β = 8.75, at two times t0 and t0+T/2. In all panels, solid isosurfaces represent x-component
and translucent isosurfaces represent z-component vorticity. Results in (a) show the x-vorticity
of the Floquet eigenfunction against the vorticity field of the base flow at Re =1191; those in
(b) show x- and z-vorticity both from the saturated nonlinear state at Re= 1250; (c) those in
show the y-vorticity of the Floquet eigenfunction against the vorticity field of the base flow
at Re= 532.5; those in (d) show x- and z-vorticity both from the saturated nonlinear state at
Re= 535.



Standing and travelling waves in a periodically driven cavity flow 305

By examining the three-dimensional structure of the velocity field associated with
modes A and B over a forcing period, it is found that mode B preserves H -symmetry:

(u, v, w)(x, y, z, t) = (u, −v, w)(x, −y, z, t + T/2), (5.1)

whereas mode A breaks H -symmetry, but is invariant to another space–time
symmetry:

(u, v, w)(x, y, z, t) = (u, −v, w)(x, −y, z + λ/2, t + T/2). (5.2)

This new space–time symmetry consists of the H -symmetry composed with a spanwise
translation of one-half wavelength. These are the only two options for velocity vectors
of three-dimensional T -periodic modes.

It is instructive to compare the present long and short wavelength synchronous
modes with those of the cylinder wake flows. The general shape and alignment of
the perturbation x-vorticity for mode B has many similarities to what is seen in the
streamwise (x) perturbation vorticity for cylinder wakes. Both are braid-type shear-
layer instabilities, aligned predominantly normal to the base flow. The instability
produces comparatively little change in the spanwise vorticity of the main rollers. In
both flows, mode A, in contrast, brings about comparatively large changes in the
spanwise vorticity of the main rollers, which become observably wavy as a result –
the perturbation vorticity is significant within the main rollers. The space–time
symmetries of our modes A and B (equations (5.1)–(5.2)) are opposite those of
the cylinder wakes (e.g. see Robichaux et al. 1999; Barkley, Tuckerman & Golubitsky
2000; Blackburn & Lopez 2003); the wake long-wave mode A and our short-wave
cavity mode B both preserve H -symmetry, whereas the short-wave wake mode B
and our long-wave cavity mode A break H -symmetry, but are invariant to another
space–time symmetry, (5.2). We will return to these points in § 7.1.

5.4. Nonlinear stability analysis of synchronous modes

The nonlinear criticality of the synchronous bifurcations to three-dimensional
modes A and B is determined by examining the variation with Reynolds number of a
measure related to the energy (squared amplitude) of the instability modes, obtained
using three-dimensional DNS. This measure of the perturbation energy is

qz =
1

4V 2
maxΓ h2λ

∫ h

0

∫ Γ h/2

−Γ h/2

∫ λh/2

−λh/2

〈w2〉 dz dy dx, (5.3)

i.e. qz is the normalized contribution to the time-averaged kinetic energy from the
spanwise velocity component, which is zero for the base state. Figure 10 shows how qz

varies with Re for modes A and B, over a small range of Reynolds numbers above Rec.
Here, Rec is derived from the Floquet analysis at the same St. The spanwise wavelength
λ used in the DNS likewise derives from the critical Floquet mode, as does the small
perturbation applied to the base flow used to initialize the three-dimensional DNS.

For a supercritical pitchfork bifurcation, we expect the squared amplitude of the
perturbation (and qz) to initially show linear growth with |Re − Rec|. This is clearly
the case in figure 10(b), immediately identifying the bifurcation to mode B as being of
supercritical type. The situation for mode A (figure 10a) is more complicated. Here, it
can be seen that qz ∼ |Re − Rec|1/2 – this is again a supercritical pitchfork bifurcation,
but close to a degenerate case in which the first Landau constant (Drazin & Reid
1981) is effectively zero and the growth to saturation is governed by the second
Landau constant (coefficient of the quintic terms in perturbation amplitude), which
is positive. These results have been confirmed by analyses of the temporal growth
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Figure 10. Analysis of the nonlinear energy growth with departure from critical Reynolds
number, Rec for (a) mode A at St = 160 and (b) mode B at St =20. The ordinate, qz, is a
measure of the contribution of the three-dimensional instability to the total kinetic energy. Each
mode exhibits a different kind of supercritical bifurcation: mode B is a standard supercritical
bifurcation, but mode A is partially degenerate, with a near-zero first Landau constant.

to saturation (not shown): for both modes A and B, the growth of the perturbation
energy does not exceed exponential, and in the case of mode A, the saturation is
fitted best by quintic terms, any contribution from cubic terms being negligible.

The corresponding weakly nonlinear analyses for the synchronous modes of the
cylinder wake shows that the short wavelength mode B is supercritical and the long
wavelength mode A is subcritical (Henderson & Barkley 1996; Henderson 1997),
i.e. the first Landau constant for mode A is small and negative. The synchronous
bifurcation producing mode A in the driven cavity flow does not necessarily remain
slightly supercritical along its entire bifurcation curve (a point we have not checked),
as the Landau constants vary with parameters and it is quite possible that the
bifurcation could also become subcritical at some point on the curve.

6. Spatio-temporal structure of the quasi-periodic mode
6.1. Basic states

The form of the base state which is unstable to mode QP has characteristics in
common with those of the base states that are unstable to modes A and B; figure 11
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Figure 11. Contours of z-vorticity of the basic state at (St = 100, Re= 1212) (which is
unstable to mode QP) over one forcing period, T .

shows contours of the z-vorticity of the basic state at St =100, Re = 1212 over one forc-
ing period, T (cf. figure 7). It is apparent that there are two rollers during the entire
cycle, as for the base states that are unstable to mode A, but they have more variability
over the cycle. Basic states that are unstable to mode B exhibit more variability in
the size of the rollers as the roller at each end of the cavity dissipate completely over
part of the cycle. The shear layers that form on the vertical walls of the cavity tend
to penetrate and disrupt the roller adjacent to that wall (which has vorticity of the
opposite sign of that in the shear layer), as with base states unstable to mode A (see
figure 7a). However, a strong uninterrupted shear layer also envelopes that roller (e.g.
at times t = 3T/8 to t = 5T/8), as is the case with basic states unstable to mode B.

6.2. Floquet analysis: secondary periods and wave speeds

The onset of the quasi-periodic states occurs when complex-conjugate pairs of Floquet
multipliers cross the unit circle: µ = e±iθ . The bifurcation introduces a secondary
period related to θ: Ts = 2πT/θsr , where θsr is a self-rotation, or winding, number.
Floquet analysis based on the Poincaré map does not necessarily provide the self-
rotation number, but rather an angle θ ∈ [0, π]. The relationship between θ and
θsr is θsr =2lπ ± θ , where the sign and integer multiple l are undetermined. For
maps that are derived from continuous systems, there are a variety of methods
available to unambiguously determine θsr from θ (e.g. see Lopez & Marques 2000;
Blackburn 2002). Here, we directly determined the second period from the nonlinear
quasi-periodic solution, to find θsr = θ .

Figure 12(a) shows the variation of Ts/T with St. It can be seen that the secondary
period Ts reaches a minimum near St= 105, and that Ts approaches, but does not quite
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Figure 12. (a) The ratio of Neimark–Sacker period to floor oscillation period as function of
St at the critical values of Re and β for the onset of mode QP. Mode QP is the first to become
critical as Re is increased for values of St between the dashed lines. (b) Dimensionless wave
speed as function of St at the critical values of Re and β for the onset of mode QP.

achieve, a 1:4 subharmonic resonance with the base flow. While the Neimark–Sacker
bifurcation is close to a strong resonance (i.e. T/Ts = p/q; p, q ∈ � with q � 4), we
have not encountered locking in the limited set of nonlinear computations that we
have run.

At the bifurcation, the O(2) symmetry produces a pair of complex eigenfunctions,
each of which correspond to modulated travelling waves (±z-TW); these can be
combined symmetrically to produce a quasi-periodic standing wave (SW). Both TW
and SW are modulated by the underlying periodic base flow. The ratio θ/βc can be
interpreted as a dimensionless wave speed, i.e. how far in cavity-height units h a TW
will travel in z during one floor period T . Figure 12(b) shows the variation of this
wave speed with St; at onset, all TW travel ∆z ≈ h/6 during ∆t = T .

6.3. Three-dimensional structure and symmetries of the quasi-periodic modes

Figure 13 shows translucent isosurfaces of z-vorticity with solid isosurfaces of x-
vorticity for the critical Floquet modes at (St = 100, Re = 1212), and for saturated
DNS at (St= 100, Re= 1225), illustrating both TW and SW solutions at phases T/2
apart. This figure is analogous to figure 9 for the synchronous modes, and again it
is the z-vorticity of the basic state (as opposed to that of the Floquet mode) that is
illustrated in the left-hand column, but z-vorticity of the nonlinear solution that is
used in the right-hand column.
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Figure 13. Comparisons of instantaneous vorticity isosurfaces from Floquet analysis with
those from direct numerical simulation for (a, b) travelling-wave (TW) and (c, d) standing-wave
(SW) states for mode QP, St =100 and β =8.5, at two times t0 and t0 +T/2. In all panels, solid
isosurfaces represent x-component and translucent isosurfaces represent z-component vorticity.
Results in (a, c) show the x-vorticity of the Floquet eigenfunction against the vorticity field
of the base flow at Re= 1212; those in (b, d) show x- and z-vorticity both from the saturated
nonlinear state at Re= 1225.
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Figure 14. Top views (from +x) of isosurfaces of vorticity from DNS at (St = 100, Re= 1225),
over four floor cycles for (a) the +z-TW and (b) SW. Solid isosurfaces: x-component vorticity;
translucent: z-component. The time taken for the passage of the TW through the represented
domain (one spanwise wavelength, λ) can be seen to be very close to 4T (see figure 12a).

A comparison of figures 9 and 13 suggests that mode QP has more in common
with mode B than with mode A, since the dominant features of the perturbation
flows again appear to be braid-like shear-layer instabilities. A difference from mode B
is that rollers persist at both ends of the cavity throughout the entire floor cycle.
For mode QP, the shear layers that wrap around these rollers interact, as do their
instabilities (i.e. the braids).

To help illustrate the nature of the TW state, and to compare it with the SW
state, figure 14 shows the TW and SW x-vorticity from DNS at (St = 100, Re = 1225),
strobed at the floor oscillation period, over four cycles. Comparing the solutions at
times 0 and 4T , for SW the solutions have very similar structure, but the strengths
of the various structures differ; this is due to the modulation implied by the quasi-
periodicity. For the TW, on the other hand, the strobed structures remain invariant in
a translating frame of reference, and they translate almost one complete wavelength
λ in time 4T . This is consistent with the approximately 4:1 ratio of Ts/T provided by
the Floquet analysis at St= 100 (see figure 12a).

In order to understand the physics of the mode QP wave states better, figure 15
presents vorticity isosurfaces at T/6 phase increments over one floor oscillation cycle.
For the TW state, there is considerable organization and regularity. The braids on
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Figure 15. Top views (from +x) of isosurfaces of vorticity at (St = 100, Re= 1225), at T/6
phases for (a) +z-TW and (b) SW. Solid isosurfaces: x-component vorticity; translucent:
z-component. For the TW, note the merging of structures of like-signed vorticity, moving in
the +z-direction as time proceeds.

opposite rollers form, displaced by λ/4 in the spanwise direction, and for the +z

(−z) TW state the braids on the ‘old’ roller are absorbed by like-signed braids at
the spanwise location λ/4 to their +z (−z) on the newly formed opposite roller. This
merging process, continually repeated, produces a modulated travelling wave. By
comparison, the SW state exhibits no regularity, owing to its quasi-periodic nature –
there is no reference frame in which the SW state appears periodic. By observing
similar sequences for the SW state over much longer periods (not shown), it is seen
that at some times, positive x-vorticity braids meet negative x-vorticity braids from
the opposite roller, and at other times they meet positive x-vorticity braids; however,
as is to be expected for a spanwise reflection-symmetric SW, there is no net spanwise
migration of the braids.

The modulated travelling waves break the reflection invariance in z, and so there are
two of them, +z- and −z-travelling, and one is obtained from the other by reflection
in z. They retain a discrete translation invariance in z. They also break the space–
time H -symmetry, but are invariant to another space–time symmetry corresponding
to the H -symmetry operation applied in a frame moving at the wave speed. The
quasi-periodic standing waves break the translation invariance in z, so there is a
continuous family of these parameterized by their spanwise phase; all members can
be generated from one by translations in z. They retain a reflection invariance in z,
centred about their nodes. They break the space–time symmetry H and possess no
space–time symmetry.

6.4. Time-average streaming flow of the TW states

The TW, unlike SW and modes A and B, are not cellular, and as such have a net flux
in the spanwise direction (±z, depending on which direction the wave is travelling).
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Figure 16. Contours of average spanwise velocity for the +z-TW at St = 100, Re= 1225,
Black contours represent negative values of w; grey, positive.

For example, at (St = 100, Re= 1225), the nonlinear +z-TW state has a normalized
net axial velocity given by

Ws

Vmax

=
1

Vmaxh2Γ

∫ h

0

∫ Γ h/2

−Γ h/2

〈w〉 dy dx = 1.29 × 10−5, (6.1)

i.e. the net axial flux is in the same direction as the motion of the TW, but is quite
small. This situation is analogous to that which occurs in Taylor–Couette flow when
the basic Couette flow loses stability via a Hopf bifurcation with O(2) symmetry, and
either spirals (travelling waves) or ribbons (standing waves) result; the spirals produce
a net axial flux, but the ribbons do not (e.g. see Chossat & Iooss 1994; Antonijoan,
Marques & Sanchez 1998).

Figure 16 is a contour plot of 〈w〉 at a z-plane for the +z-TW state at (St = 100,
Re= 1225). The black (grey) contours are for positive (negative) velocity. The flow
in the positive +z-direction is concentrated in the Stokes layer on the oscillating
floor and in between the two rollers, near y =0, while the flow in the −z-direction
is concentrated on the outer edges of the rollers; in the core of the rollers 〈w〉 is
essentially zero. Averaging over the (x, y)-plane gives the value presented in (6.1): a
net velocity in the +z-direction.

6.5. Nonlinear stability analysis of the quasi-periodic modes

The nonlinear criticality of the TW and SW states is examined using the same
methodology and diagnostics as was employed for the synchronous modes in § 5.4: the
Navier–Stokes solutions are evolved to saturated states at Re> Rec and the diagnostic
qz is plotted against Re. Here the bifurcations are of O(2)-equivariant Neimark–Sacker
type as opposed to symmetric pitchforks, but the expected forms of variation of qz

with |Re − Rec| are the same, and a linear variation signals a supercritical bifurcation.
The results for the TW and SW states at St = 100 for Re >Rec are shown in figure 17;
both states simultaneously bifurcate supercritically at Rec, but the TW states have
larger energies.

This behaviour is analogous with the theory of Hopf bifurcations with O(2) sym-
metry (e.g. Golubitsky et al. 1988), where both SW and TW bifurcate simultaneously
as a result of the symmetry, and a stable solution exists only if both branches bifurcate
supercritically. Further, the theory says that the solutions on the branch with largest
energy are stable. By subjecting both the saturated SW and TW states to small
(O(10−3)) random perturbations, we have found that the TW states are stable, while
the SW states make a transition to one of the two TW states. Since the SW states are
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Figure 17. Average energy of the spanwise velocity component of TW and SW nonlinear
states versus Re at St = 100. SW states are unstable to small asymmetric perturbations.

unstable, they cannot be observed as saturated states in physical experiments; the fact
that we are able to observe them here stems from the simulations being confined to an
invariant subspace by the choice of symmetric initial three-dimensional perturbations
to the base flows, and a numerical method that preserves such a subspace.

7. Discussion and conclusions
7.1. Physical instability mechanisms

The physical mechanisms leading to the synchronous three-dimensional instabilities of
our basic states have much in common with other flows where the basic state consists
of rollers aligned in the homogeneous ‘spanwise’ direction. The analogy is strongest for
the periodically shedding wakes of bluff bodies, since the two-dimensional base flows
share many of the same physical features and have the same symmetries. A common
feature of these flows is the presence of two distinct types of three-dimensional
synchronous instability; a roller-core instability, which produces waviness of the
rollers, and a shear layer instability, which produces braid-type structures that tend
to lie in directions orthogonal to the roller cores. The spanwise lengthscale of the
roller-core instability is typically greater than that of the shear-layer instability, which
is most probably directly related to the fact that the roller characteristic length
(diameter) is usually greater than the shear-layer characteristic length (thickness). A
discussion of these types of instabilities, particularly as they apply to cylinder wakes,
may be found in Williamson (1996). For the wakes, the critical wavelength λc is
determined by a single value of Re, Rec; whereas in the cavity, λc and Rec vary with
St. Mode A is a core instability mode and the core diameter is determined by h, not
by St, and so λc does not vary much with St. On the other hand, mode B seems likely
to be a centrifugal instability of the shear layer wrapped around the rollers (on the
basis of analysis for the steady driven cavity, see e.g. Albensoeder, Kuhlmann & Rath
2001), and this shear layer originates as the Stokes layer on the oscillatory floor. The
thickness of this layer varies with St and as a result so does λc. It should also be
noted that even longer-wavelength modes exist in open flows (e.g. Crow 1970), but
these have significantly different properties to those for the present long-wavelength
mode, are not observed either for bluff-body wakes or in the present problem, and
will not be further discussed here.
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As noted in § 5.3, in the present flow it is mode A, the long wavelength mode, that
breaks the H -symmetry of the basic state, while for the wakes of the circular and
square cylinders, it is mode B. Owing to the observed physical similarities between the
long and short wavelength modes of the wakes and oscillatory cavity flow instabilities,
it seems likely that the corresponding modes stem from the same physical instability
mechanism in each of the flows. Hence, there is no correlation between physical
instability mechanism and the resulting space–time symmetry.

7.1.1. Synchronous mode A

The synchronous roller-core instability, mode A, here generates a spanwise wave-
length, λA ≈ 3.7h, which is comparable to the cylinder-wake roller-core mode, for
which λ ≈ 4.0D at onset. In the present flow, the pair of roller cores for mode A
exhibit the same quasi-steady large-scale waviness as observed for an isolated pair of
vortices in the work of Leweke & Williamson (1998). When viewed from directions
orthogonal to the cavity floor (from ±x), the waviness of the cores in the y-direction
is in-phase at all times; when viewed from directions orthogonal to the vertical
cavity walls (from ±y), the waviness of the cores in the x-direction is out-of-phase
at all times. This pairing of phase relationships (which are independent of the H

symmetry (5.2)) is a kinematic rather than dynamic requirement, as pointed out by
Leweke & Williamson. The mode A instability of the bluff-body wakes has a similar
time-invariant wave-phase pairing.

For quasi-steady problems in which unsteady shear-layer interaction with roller
cores is not significant, and where flows are well characterized as initially approxi-
mately circular or elliptic vortices with closed streamlines, embedded in a strain
field, a consensus has emerged that elliptic instability is the driving mechanism (e.g.
Pierrehumbert 1986; Bayly 1986; Landman & Saffman 1987; Waleffe 1990; Leweke
& Williamson 1998; Kuhlmann, Wanschura & Rath 1998; Laporte & Leweke 2002).
For near-wake flows, which are highly unsteady, and where vortices are significantly
distorted by the shear layers that feed them, the situation is more complicated, and it
is not yet clear that elliptic instability is necessarily the primary mechanism. Some of
the arguments, for and against, are presented by Thompson, Leweke & Williamson
(2001).

In regard to the issue of assessment of elliptic instability, the present flow shares
some of the complexity of the near-wake flows of the two-dimensional bluff bodies.
The base flows that give rise to mode A are unsteady, and the rollers are periodically
distorted by the shear layers which penetrate into them and feed them vorticity. Our
efforts, not described here, to analyse the localized elliptic instability growth rates (as
Thompson et al. 2001) have been inconclusive, as the highest growth rates arise in
the near-wall shear layers, not within the cores of the rollers. As a result of the strong
disruption caused by the regular penetration of the shear layers, it is also difficult
to find clear-cut evidence within the rollers of the kinds of perturbation vorticity
patterns described by Waleffe (1990) for elliptic instability. On the other hand, the
perturbation vorticity is strong within the main rollers and makes them significantly
wavy.

7.1.2. Synchronous mode B

For the generation of mode B, the perturbation enstrophy evolves on the endwalls
(y = ±h) and the top wall (x = h), forming an extended shear layer that is swept into
the interior of the cavity by the roller that it partially surrounds. This has features
in common both with shear-layer roll-up in the near-wake of bluff bodies, and with
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steady lid-driven cavity flows. The three-dimensional instability of the shear layer in
our flow also appears to have much in common with these other flows. Several studies
have investigated the Taylor–Görtler type secondary instabilities of steady lid-driven
cavity flows (e.g. Ramanan & Homsy 1994; Albensoeder et al. 2001; Migeon 2002).
In wake flows, the mechanism for initiation of the instability and spanwise length
scale selection has not, to our knowledge, been conclusively determined – while vortex
stretching at the saddle/hyperbolic points between the main rollers will amplify any
three-dimensional perturbation, this does not select any particular transverse length
scale.

In the present flow, the origin of the braid-type three-dimensional features typical of
mode B appears to be a centrifugal instability, as for the steady lid-driven cavity flows.
And by extension, it is possible that the mode B instabilities in wake flows are also
centrifugal in nature. The analytical methods for making this kind of classification,
originally developed by Rayleigh for inviscid flows with circular streamlines, were
extended by Bayly (1988) to encompass two-dimensional steady flows. More work is
needed in order to further extend the method to deal with two-dimensional time-
periodic flows before a completely categorical assessment can be made.

7.1.3. Quasi-periodic mode QP

The quasi-periodic mode is a novel three-dimensional instability leading to stable
modulated travelling waves. Modes with complex-conjugate Floquet multipliers were
reported by Barkley & Henderson (1996) for the cylinder wake flow at Re intermediate
between modes A and B, but these did not reach criticality, and mode shapes were
not presented or discussed. More recently, it has been shown (Blackburn & Lopez
2003) that both the circular and square cylinder wakes have quasi-periodic modes,
with wavelengths intermediate between those for modes A and B.

Many of the features of mode QP flows are similar to those of mode B, and hence
the underlying mechanism is also likely to be centrifugal instability. While we have
presented and discussed both SW and TW states for this mode, the SW state is
an unstable state for the parameter regime investigated. The manner in which TWs
propagate in the spanwise direction is a result of the merging of braid vortices of
like sign that originate as Taylor–Görtler type instabilities, displaced λ/4 apart in the
spanwise direction from opposite ends of the cavity. The TWs generate a net spanwise
flux in the same direction as that of wave propagation.

7.2. Summary

We have presented stability analysis of a T -periodic two-dimensional flow that shares
the symmetries of the two-dimensional time-periodic wakes of circular and square
cylinder wakes, and of any body that has reflection symmetry about the wake centre-
line. The flow has two synchronous three-dimensional instability modes which exhibit
considerable similarity to the long and short wavelength modes observed in bluff-
body wakes. In addition, the flow has a new kind of three-dimensional quasi-periodic
instability mode that is observable as modulated travelling waves.
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